The Mehler formula and the Green function of the multi-dimensional isotropic harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9683
(http://iopscience.iop.org/0305-4470/9/5/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:17

Please note that terms and conditions apply.

# The Mehler formula and the Green function of the multidimensional isotropic harmonic oscillator $\dagger$ 

J Bellandi Fo and E S Caetano Neto<br>Instituto de Física Teórica, Rua Pamplona 145, São Paulo, Brasil

Received 12 November 1975, in final form 5 January 1976


#### Abstract

Using a generalized Mehler formula, a closed representation is obtained for the Green function of the stationary Schrödinger equation for a multidimensional isotropic harmonic oscillator.


## 1. Derivation of the Green function

The present note contains a simple derivation of the Green function of the $N$ dimensional harmonic oscillator using the generating function of the product of the hamonic oscillator wavefunction given by a generalized Mehler formula (Erdélyi 1953).

We define the Green function of the stationary Schrödinger equation for an $N$ dimensional harmonic oscillator by means of the spectral decomposition
$G^{N}\left(r, r^{\prime}, \lambda\right)=\sum_{\nu=0}^{\infty}\left(E_{\nu}-\lambda\right)^{-1} \sum_{\nu_{1}+\nu_{2}+\ldots+\nu_{N}=\nu} \psi_{\nu_{1}}\left(x_{1}\right) \psi_{\nu_{1}}\left(x_{1}^{\prime}\right) \ldots \psi_{\nu_{N}}\left(x_{N}\right) \psi_{\nu_{N}}\left(x_{N}^{\prime}\right)$
where $\psi_{v_{i}}\left(x_{i}\right)$ is the harmonic oscillator wavefunction; $E_{\nu}=\nu+\frac{1}{2} N$ is the energy and $r$ is a radius vector in the $N$ dimensional space. (We put $\hbar=m=\omega=1$.)

The generalized Mehler formula for the $N$ dimensional harmonic oscillator can be witten in the following way (see appendix)

$$
\begin{align*}
\pi^{N / 2} \sum_{\nu=0}^{\infty} \xi^{\nu} & \sum_{\nu_{1}+\nu_{2}+\ldots+\nu_{N}=\nu} \psi_{\nu_{1}}\left(x_{1}\right) \psi_{\nu_{1}}\left(x_{1}^{\prime}\right) \ldots \psi_{\nu_{N}}\left(x_{N}\right) \psi_{\nu_{N}}\left(x_{N}^{\prime}\right) \\
& =\left(1-\xi^{2}\right)^{-N / 2} \exp \left[-\frac{1}{2}\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right)\right] \exp \left(\frac{2 \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} \xi-\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right) \xi^{2}}{1-\xi^{2}}\right) \tag{2}
\end{align*}
$$

We see that the Mehler formula contains explicity the full $\mathrm{SU}_{N}$ symmetry of the $N$ dimensional harmonic oscillator.
We consider first the density matrix

$$
\begin{equation*}
\rho_{n}^{N}\left(r, r^{\prime}\right)=\operatorname{res} G\left(r, \boldsymbol{r}^{\prime}, E_{\nu}\right)=\sum_{\nu_{1}+\nu_{2}+\ldots+\nu_{N}=\nu} \psi_{\nu_{1}}\left(x_{1}\right) \psi_{\nu_{1}}\left(x_{1}^{\prime}\right) \ldots \psi_{\nu_{N}}\left(x_{N}\right) \psi_{\nu_{N}}\left(x_{N}^{\prime}\right) . \tag{3}
\end{equation*}
$$

THork supported by Finep (Financiadora de Estudos e Projetos).

Using equation (2) we have

$$
\begin{align*}
& \rho_{\nu}^{N}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\pi^{-N / 2} \exp \left[-\frac{1}{2}\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right)\right] \frac{1}{2 \pi \mathrm{i}} \oint_{\xi=0} \mathrm{~d} \xi \xi^{-\left(E_{\nu}-\frac{1}{2} N+1\right)}\left(1-\xi^{2}\right)^{-N / 2} \\
& \times \exp \left(\frac{2 \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} \xi-\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right) \xi^{2}}{1-\xi^{2}}\right) . \tag{4}
\end{align*}
$$

The Green function is given by

$$
\begin{equation*}
G^{N}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \lambda\right)=\sum_{\nu=0}^{\infty} \frac{\rho_{\nu}^{N}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)}{E_{\nu}-\lambda} \tag{5}
\end{equation*}
$$

and for $\operatorname{Re}\left(\frac{1}{2} N-\lambda\right)>0$ can be cast into the form

$$
\begin{align*}
G^{N}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \lambda\right)= & \pi^{-N / 2} \exp \left[-\frac{1}{2}\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right)\right] \int_{0}^{1} \mathrm{~d} \xi \xi^{(N / 2) . \lambda-1} \\
& \times\left(1-\xi^{2}\right)^{-N / 2} \exp \left(\frac{2 \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} \xi-\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right) \xi^{2}}{1-\xi^{2}}\right) \tag{6}
\end{align*}
$$

This integral representation is exactly the expression of Berendt and Weimar (1972) obtained using the full $\mathrm{SU}_{N}$ symmetry of the $N$ dimensional harmonic oscillator in a Fock space representation. The singularities exhibited by equation (6) are the well known singularities of the harmonic oscillator Green function: none for $N=1$, a logarithmic one in the variable $\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$ for $N=2$ and a pole of order $N-2$ for higher $N$ in that variable. A very simple variable transformation can also reproduce the results obtained by Bakhrakh et al (1972).

## Acknowledgment

The authors wish to thank Professor A H Zimerman for critical reading of the manuscript.

## Appendix

To prove equation (2) we start with the bilinear generating function of one $N$ dimensional Hermite polynomial (Erdélyi 1953)

$$
\begin{equation*}
\sum \frac{t_{1}^{\nu_{1}} \ldots t_{N}^{\nu_{N}}}{\nu_{1}!\ldots \nu_{N}!} H_{\nu}(r) H_{\nu}\left(r^{\prime}\right)=\left(t_{1} \ldots t_{N}\right)^{-1}\left(\Delta_{1} \Delta_{2}\right)^{-1 / 2} \exp \left[\frac{1}{4} \psi_{1}\left(C r+C r^{\prime}\right)-\frac{1}{4} \psi_{2}\left(C_{r}-C^{\prime}\right)\right] \tag{A.1}
\end{equation*}
$$

with the following notation:

$$
\begin{equation*}
\phi(\boldsymbol{r})=\sum_{i, j=1}^{N} C_{i j} x_{i} x_{j} \tag{A,2}
\end{equation*}
$$

where $C$ will be a fixed positive definite symmetric square matrix of real elements;

$$
\begin{align*}
& \phi_{1}(r)=\sum_{j=1}^{N}\left(x_{j}^{2} / t_{j}\right)+\phi(r) \\
& \phi_{2}(\boldsymbol{r})=\sum_{j=1}^{N}\left(x_{j}^{2} / t_{j}\right)-\phi(r) \tag{A.3}
\end{align*}
$$

$\Delta_{k}$ is the determinant of $\phi_{k}, k=1,2 . \psi_{k}(\boldsymbol{r})$ is the reciprocal quadratic form of $\phi_{k}(\boldsymbol{r})$. For sufficiently small positive $t_{i}, \phi_{k}$ are positive definite.

If we put $t_{1}=t_{2}=\ldots t_{N}=\xi / 2$ and $C_{i j}=2 \delta_{i j}$ we have for $\phi_{k}$ and $\psi_{k}$

$$
\begin{array}{ll}
\phi_{1}(r)=\sum_{i, j=1}^{N}\left(D_{1}\right)_{i j} x_{i} x_{j} ; & \psi_{1}(r)=\sum_{i, j=1}^{N}\left(D_{1}^{-1}\right)_{i j} x_{i} x_{j}  \tag{A.4}\\
\phi_{2}(\boldsymbol{r})=\sum_{i j=1}^{N}\left(D_{2}\right)_{i j} x_{i} x_{j} ; & \psi_{2}(\boldsymbol{r})=\sum_{i j=1}^{N}\left(D_{2}^{-1}\right)_{i j} x_{i} x_{j}
\end{array}
$$

where $\left(D_{1,2}\right)_{i j}=2(1 \pm \xi) \delta_{i j} / \xi$, and equation (A.1) can be transformed into
$\sum \frac{(\xi / 2)^{\nu}}{\nu_{!}!\ldots \nu_{N}!} H_{\nu}(\boldsymbol{r}) H_{\nu}\left(\boldsymbol{r}^{\prime}\right)=\left(1-\xi^{2}\right)^{-N / 2} \exp \left(\frac{2 \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} \xi-\left(\boldsymbol{r}^{2}+\boldsymbol{r}^{\prime 2}\right) \xi^{2}}{1-\xi^{2}}\right)$.

## References

Bakhrakh V L, Vetchinkin S I and Khristenko S V 1972 Teor. Mat. Fiz. 12776
Berendt G and Weimar L 1972 Lett. Nuovo Cim. 5613
Erdélyi A (ed) 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) p 287

