IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The Mehler formula and the Green function of the multi-dimensional isotropic harmonic

oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9 683
(http://iopscience.iop.org/0305-4470/9/5/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:17

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1Py, AS Math. Gen., Vol. 9, No. 5, 1976. Printed in Great Britain. © 1976

The Mehler formula and the Green function of the multi-
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Abstract. Using a generalized Mehler formula, a closed representation is obtained for the
Green function of the stationary Schrédinger equation for a multidimensional isotropic
harmonic oscillator.

1. Derivation of the Green function

The present note contains a simple derivation of the Green function of the N
dimensional harmonic oscillator using the generating function of the product of the
harmonic oscillator wavefunction given by a generalized Mehler formula (Erdélyi
1953).

We define the Green function of the stationary Schrodinger equation for an N
dimensional harmonic oscillator by means of the spectral decomposition
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Whef? ¥, (x;) is the harmonic oscillator wavefunction; E, = »+3N is the energy and r is
tradius vector in the N dimensional space. (We putzi=m=w=1.)

‘The generalized Mehler formula for the N dimensional harmonic oscillator can be
witten in the following way (see appendix)
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. We§ee that the Mehler formula contains explicity the full SUy symmetry of the N
&Insmna]' harmonic oscillator.
€ consider first the density matrix
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Using equation (2) we have
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The Green function is given by
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and for Re(AN— 1) >0 can be cast into the form
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This integral representation is exactly the expression of Berendt and Weimar (1972)
obtained using the full SUy symmetry of the N dimensional harmonic oscillator in 2
Fock space representation. The singularities exhibited by equation (6) are the vell
known singularities of the harmonic oscillator Green function: none for N=1, 2
logarithmic one in the variable |r —r'| for N =2 and a pole of order N —2 for higher Nin
that variable. A very simple variable transformation can also reproduce the results
obtained by Bakhrakh et al (1972).
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Appendix

To prove equation (2) we start with the bilinear generating function of one N
dimensional Hermite polynomial (Erdélyi 1953)
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with the following notation:
N (A2)
¢(r)= 21 Cyjxix;
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where C will be a fixed positive definite symmetric square matrix of real elements;

¢1(r)—Z (x}/5)+(r)

N
¢a(r)= X (/1) = (P

j=1

(A3)

A, is the determinant of ¢y, k =1, 2. ¢ (r) is the reciprocal quadratic form of ¢ (r).

For sufficiently small pos1t1ve t, ¢y are posmve definite.
fweputfy=06=...tn=£/2 and C; =28; we have for ¢, and ¢,

N
i(r)= Z (Dl)ijxixj; Y(r)= Z (D1 iXiXj
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where (D1 5); = 2(1£ £)8;/€, and equation (A.1) can be transformed into
§/2 2r.ré— (r*+ r'z).f2
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